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Relaxation of nonspherical sessile drops towards equilibrium

Vadim S. Nikolayev* ,† and Daniel A. Beysens†

CEA-DSM-DRFMC-Service des Basses Tempe´ratures/ESEME, CEA Grenoble, Grenoble, France
~Received 5 April 2001; revised manuscript received 25 October 2001; published 10 April 2002!

We present a theoretical study related to a recent experiment on the coalescence of sessile drops. The study
deals with the kinetics of relaxation towards equilibrium, under the action of surface tension, of a spheroidal
drop on a flat surface. For such a nonspherical drop under partial wetting conditions, the dynamic contact angle
varies along the contact line. We propose a new nonlocal approach to the wetting dynamics, where the contact
line velocity depends on the geometry of the whole drop. We compare our results to those of the conventional
approach in which the contact line velocity depends only on the local value of the dynamic contact angle. The
influence on drop dynamics of the pinning of the contact line by surface defects is also discussed.
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I. INTRODUCTION

At first glance, the motion of the gas-liquid interfac
along the solid surface is a purely hydrodynamic proble
However, it attracted significant attention from the physici
since the work@1#, which showed an unphysical divergen
that appears in the hydrodynamic treatment if a motion o
wedge-shaped liquid slides along the solid surface. The
son for this divergence lies in the no-slip condition~i.e., zero
liquid velocity! at the solid surface. Being so common
hydrodynamics, this boundary condition is questionable
the vicinity of the contact line along which the gas-liqu
interface joins the solid. In the absence of mass transfer
tween the gas and the liquid, the no-slip condition requi
zero velocity for the contact line that is supposed to
formed of the liquid molecules in the contact with the sol
It means that, for example, an oil drop cannot move alo
the glass because of the no-slip condition. Of course,
contradicts the observations.

The experiment@2# demonstrated that the velocity on th
liquid-gas interface is directed towards the contact line d
ing the contact line advance. The authors interpreted
result by the rolling~caterpillar! motion of the drop@3#.
However, later theoretical study@4# shows that such a motio
is compatible with the no-slip condition on the nondefor
able solid surface only for the contact angles close to 18

The justification of the no-slip condition is well know
@5#: it is the excess of the attractive force between the s
and the liquid molecules over the force between two liq
molecules. This attraction has a tendency to prevent the
tion of the liquid molecules adjacent to the solid. Obvious
the same forces resist when these molecules are force
move. In other words, some relatively large~with respect to
viscous dissipation! energy should be spent for this forcing

Numerous microscopic theories~see, e.g.,@5–12#! pro-
pose different phenomena as to be responsible for the co
line motion. However, no general theory has been agr
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upon. This situation is partly due to the scarceness of
information that can be extracted from the experiments. M
of them deal with either drops with cylindrical symmet
~circular contact lines! or the climbing of the contact line
over a solid immersed into a liquid~straight contact line!. In
these experiments, the contact line velocityvn measured in
the normal direction does not vary along the contact line
a macroscopic scale larger than the size of the surface
fects. The experiments with nonspherical drops where su
variation exists can give additional information. This info
mation can be used to test microscopic models of the con
line motion. To our knowledge, there are only two kinds
investigated situations that feature the nonspherical dro
The first one is the sliding of the drop along an inclin
surface @13#. The second concerns the relaxation of t
sessile drops of complicated shape towards the equilibr
shape of spherical cap. This latter case was studied exp
mentally in@6# for water drops on silanized silicon wafers
room temperature. The present paper deals with this sec
case.

The principal results of@6# can be summarized as follows
~i! The relaxation of the drop from the elongated sha

towards the spherical shape is exponential. The character
relaxation timet is proportional to the drop size. The dro
size can be characterized by the contact line radiusR* at
equilibrium when the drop eventually relaxes towards
spherical cap.

~ii ! The dependence oft on the equilibrium contact angle
u is not monotonous,t(30°),t(53°) andt(53°).t(70°).

~iii ! The relaxation is extremely slow. The capillary num
ber Ca5R* h/(ts) is of the order of 1027, wheres is the
surface tension andh is the shear viscosity.

Since the motion is not externally forced, a small C
shows that the energy dissipated in the vicinity of the cont
line is much larger than in the bulk of the drop.

The contact line motion is characterized by the norm
componentvn of its velocity. Many existing theories result i
the following relationship betweenvn and the dynamic con-
tact angleu:

vn5vcF~u,us!, ~1!

whereus is the static contact angle,vc is a constant charac
s-
©2002 The American Physical Society35-1
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teristic velocity andF is a function of two arguments, th
form of which depends on the model used. For all exist
models, the following relation is satisfied:

F~u,us!52F~us ,u!, ~2!

which implies the trivial conditionF(us ,us)50. It means
simply that the line is immobile whenu5us .

The theories of Voinov@11# and Cox@10# correspond to

F5u32us
3 . ~3!

There are many theories~see, e.g.,@5,7#! which result in

F5cosus2cosu. ~4!

In a recent model by Pomeau and co-workers@6,9#, it is
proposed that

F5u2us ~5!

with the coefficientvc that depends on the direction of mo
tion ~advancing or receding! but not on the amplitude ofvn .

Since the drop evolution is extremely slow, the drop sha
can be calculated using the quasistatic argument accordin
which at each moment the drop surface can be calcul
from the constant curvature condition and the known po
tion of the contact line. The major problem is how to fin
this position. Independently of the particular contact line m
tion mechanism, at least two approaches are possible.
first of them is the ‘‘local’’ approach@6#, which consists in
the determination of the position of a given point of t
contact line from Eq.~1! whereu is assumed to be thelocal
value of the dynamic contact angle at this point. Anoth
nonlocal approach is suggested in Sec. II. Both of these
proaches should give the same result whenvn does not vary
along the contact line. However, we show that the resul
different in the opposite case.

The influence of surface defects on the contact line
namics is considered in Sec. III.

II. NONLOCAL APPROACH TO THE CONTACT LINE
DYNAMICS

In this section we generalize another approach, sugge
in @14#, for an arbitrary drop shape. This approach postula
neither Eq.~1! nor a particular line motion mechanism.
simply assumes that the energy dissipated during the con
line motion is proportional to its length and does not depe
on the direction of motion~advancing or receding!. Then, at
low contact line velocity, the leading contribution to the e
ergy dissipated per unit time~i.e., the dissipation function!
can be written in the form

T5 R jvn
2

2
dl, ~6!

where the integration is performed over the contact line
j is the constant dissipation coefficient. According to t
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earlier discussed experimental results@6#, the dissipation in
the bulk is assumed to be much smaller than that in
vicinity of the contact line.

Since we assume that most dissipation takes place in
region of the drop adjacent to the contact line, our discuss
is limited to the case where the prewetting film~that is ob-
served for zero or very low contact angles! is absent. This
situation corresponds to the conditions of the experiment@6#
where the dropwise~as opposed to filmwise! condensation
shows the absence of the prewetting liquid film. The abo
assumption also limits the description to the partial wett
case. This assumption is also justified by the experime
conditions under which it is extremely difficult to obtai
macroscopic convex drops for the contact angles less
30° because of the contact line pinning@6#. The main reason
is that the potential energyU of the drop from Eq.~A6! in
Appendix A goes to zero as the contact angle goes to zero
small contact anglesU is not large enough to overcome th
pinning forces that originate from the surface defects,
Sec. III. Therefore, the macroscopic convex drops under c
sideration cannot be observed at small contact angles.

Generally speaking, the behavior of the drop obeys
Lagrange equation@15#

d

dt S ]L
]q̇ j

D 2
]L
]qj

52
]T

]q̇ j

, ~7!

where the LagrangianL5K2U is the function of the gen-
eralized coordinatesqj and of their time derivatives, which
are denoted by a dot. The current time is denoted byt, K is
the kinetic energy, andU5U(qj ) is the potential energy
Since there is no externally forced liquid motion in this pro
lem and the drop shape change is slow, we can neglec
kinetic energy by puttingL52U. Then Eq.~7! reduces to

]U

]qj
52

]T

]q̇ j

, ~8!

the expression applied first to the contact line motion in@5#.
The potential energy of a sessile drop is@14#

U5s~AVL2ASLcosueq!, ~9!

wheres is the liquid surface tension,AVL and ALS are the
areas of the vapor-liquid and liquid-solid interfaces, resp
tively, andueq is the equilibrium value of the contact angl
We neglect the contribution due to the van der Waals for
because we consider macroscopic drops and large co
angles>30°. For such drops the van der Waals forces infl
ence the interface shape only in the very close vicinity of
contact line and this influence can be neglected.

In general the static contact angleus is not equal toueq
because of the presence of the defects, a problem that wi
treated in the Sec. III. Meanwhile, we assume thatus
5ueq . The gravitational contribution is neglected in Eq.~9!
because the drops under consideration are supposed
small, with the radius much smaller than the capillary leng
The volume of a sessile drop is fixed. Its calculation provid
5-2
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RELAXATION OF NONSPHERICAL SESSILE DROPS . . . PHYSICAL REVIEW E 65 046135
us with another equation, which closes the problem provi
that the shape of the drop surface is known. The drop sh
is determined from the condition of the quasiequilibrium th
results in the constant curvature of the drop surface.

Usually, the wetting dynamics are observed either for
spreading of droplets with the shape of the spherical cap
for the motion of the liquid meniscus in a cylindrical cap
lary, or for the extraction of a solid plate from the liquid@5#.
In all these cases, the contact line velocityvn does not vary
along the contact line and the dissipation function in
form of Eq. ~6! results in the expression@14#

vn5
s

j
~cosus2cosu!, ~10!

which is equivalent to Eq.~1!, with the functionF taking the
usual form as in Eq.~4!. One might think that this equiva
lence confirms the universal nature of this expression. In
following section we show that it is not exactly so becau
the nonlocal approach results in a different expression w
vn varies along the contact line.

Let us now apply the algorithm described above to
problem of drop relaxation. A shape for a nonspherical d
surface of constant curvature can be found only numerica
In order to treat the problem analytically, we approximate
drop shape by a spheroidal cap that is described in Carte
(x,y,z) coordinate system by the equation

x2

a2
1

y21~z1d!2

b2
51, ~11!

at z.0, the planeX-Y corresponding to the solid surfac
The symmetry of the problem allows only a quarter of t
drop ~see Fig. 1! to be considered. Since one of the para
eters (a,b,d) is fixed by the condition of the conservation
the drop volume that can be calculated as

V5
p

3

a

b
~2b323b2d1d3!, ~12!

FIG. 1. Reference system to describe the 3D spheroidal
Only one quarter of it is shown. The surface is described by
~11!. The local contact angles at the pointsM andN are shown too.
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there are only two free parameters left. The time-depend
parametersa andb can be taken as generalized coordinat
However, it is more convenient to use another set of para
eters,Rx andRy , which are the half axes of the ellipse th
form the base of the drop~see Fig. 1!, Ry.Rx . They are
related toa andb by the equations

Ry
21d25b2 and Rxb5Rya, ~13!

that follow from Eq.~11!. At the end of the relaxation

Rx5Ry5R sinus[R* , ~14!

whereR is the final radius of curvature of the drop. Ther
fore, during the late stage

Rx5R* ~12r x!

~15!
Ry5R* ~11r y!

with ur x,yu!1. Some points of the contact line advanc
some points recede. The dynamic contact angle change
value along the contact line. In particular, the po
N(Rx,0,0) in Fig. 1 advance andM (0,Ry,0) recede. These
points are extreme and their velocities have the maxim
absolute values, positive forN and negative forM. The dy-
namic contact angles (uda : dynamic advancing contact ang
in N and udr : dynamic receding contact angle inM ! also
have the extreme values there. They can be found from
equations

cosudr5d/b,
~16!

tanuda5Ry
2/~dRx!,

that reduce forr x ,r y!1 to

cosudr5cosus1sin2us~21cosus!~2r y2r x!/3,
~17!

cosuda5cosus2sin2us@~214cosus!r x2~42cosus!r y#/3.

Equation ~8!, written for the generalized coordinatesr x
and r y together with the expression for the dissipation fun
tion ~see Appendix A!, implies the set of equations

3ṙ x2 ṙ y5t0
21~Bry2Arx!,

~18!
3ṙ y2 ṙ x5t0

21~Brx2Ary!,

wheret05sR* /j and the coefficientsA andB are given by
Eq. ~A7! in Appendix A. The solutions of Eqs.~18! read

r x~ t !5@~r x
( i )2r y

( i )!exp~2t/ts!1~r x
( i )1r y

( i )!exp~2t/tn!#/2,

~19!

r y~ t !5@~r y
( i )2r x

( i )!exp~2t/ts!1~r x
( i )1r y

( i )!exp~2t/tn!#/2,

~20!

wherer x
( i ) andr y

( i ) are the initial (t50) values forr x andr y ,
respectively, and the relaxation times

p.
.

5-3
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VADIM S. NIKOLAYEV AND DANIEL A. BEYSENS PHYSICAL REVIEW E 65 046135
ts5t0 /@sin2us~21cosus!#, ~21!

tn545t0~11cosus!/@~108141 cosus114 cos2us

117 cos3us!~12cosus!#. ~22!

The variablesr x andr y are defined in Eq.~15! in such a way
that whenr x

( i )52r y
( i ) the drop surface remains spherical du

ing its relaxation. One can see from Eqs.~19! and ~20! that
the evolution is defined entirely by the characteristic timets

~spherical! in this case. Whenr x
( i )5r y

( i ) , only tn ~nonspheri-
cal! defines the drop evolution. In the real experimental s
ation where (r x

( i )2r y
( i ))!(r x

( i )1r y
( i )), the relaxation timetn

alone defines the relaxation of the drop as it follows fro
Eqs. ~19! and ~20!. Therefore,tn should be associated wit
the experimentally observed relaxation time.

The functionsts,n(us) are plotted in Fig. 2 assuming tha
j is independent ofus . Clearly, bothts and tn increase
monotonically withus in agreement with the observed te
dency for large contact angles. It is interesting to che
whether or not by applying the local approach of Eq.~10! we
recover the nonlocal result forvn . This is easy to do for the
caser x

( i )5r y
( i ) , i.e., whenr x5r y . In this case, the nonloca

model~18! implies ṙ x52r x /tn , and the contact line veloci
ties at the pointsM andN are

vn52
s

j

t0

tn
r x at the point M , ~23!

vn5
s

j

t0

tn
r x at the point N. ~24!

Since Eq.~17! results in

~cosus2cosu!52sin2us~21cosus!r x/3 at the point M ,
~25!

FIG. 2. The relaxation timests,n versus the static contact ang
us .
04613
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~cosus2cosu!5sin2us~5 cosus22!r x/3 at the pointN,
~26!

the local approach~10! implies that

vn52
s

j

1

3
sin2us~21cosus!r x at the point M ,

~27!

vn5
s

j

1

3
sin2us~5 cosus22!r x at the point N. ~28!

The comparison of Eqs.~22!–~24! with Eqs. ~27! and ~28!
show that the results of the local and the nonlocal approac
are different. However, one can verify that the results are
same in the limit of very smallus . For finite contact angles
the nonlocal approach is not equivalent to the local approa
The main difference can be summarized as follows. Thevn
value that is obtained with our nonlocal approach can
presented in the form~1! common for the local approach
However, while the characteristic velocityvc from Eq.~1! is
constant in the local approach, it isa function of the position
on the contact linein the nonlocal approach. Indeed, th
comparison of Eqs.~23!–~26! with Eqs. ~1! and ~4! shows
that

vc53
s

j

t0

tn
Y @sin2us~21cosus!# at the point M ,

~29!

vc53
s

j

t0

tn
Y @sin2us~5 cosus22!# at the point N.

~30!

We do not expect our model to be a good description
the contact angles close to 90°. The reason is the limita
of the spheroid model for the drop shape. The sphero
shape necessarily fixesudr590° whenuda590° indepen-
dently of the contact line velocity, which is incorrect. In a
dition, the spheroid model does not work at all forus.90°.
One needs to find the real shape of the drop~which is defined
by constant curvature condition! to overcome these difficul-
ties.

In order to estimate the limiting value forus for which the
spheroid model works well we mention that the dynam
advancing and receding contact angles defined by Eq.~17!
must satisfy the inequalityudr<us<uda . By putting r x

( i )

5r y
( i ) in Eqs. ~19! and ~20! one finds that this inequality is

satisfied whenus,66°. The last inequality provides us wit
the limit of the validity for the spheroidal model.

To conclude this section we note that our nonlocal a
proach to the dynamics of wetting is not equivalent to t
traditional local approach. Both approaches allow the rel
ation time to be calculated for a given contact angle provid
that the contact angle dependence of the dissipation co
cient j is known. Additional experiments are needed to
veal which approach is the most suitable. Under the assu
tion that thej(us) dependence~if any! is weak, we find that
the relaxation time decreases with the contact angle.
5-4
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RELAXATION OF NONSPHERICAL SESSILE DROPS . . . PHYSICAL REVIEW E 65 046135
This result explains the decrease of the relaxation tim
large contact angles observed in@6#. We think that the oppo-
site tendency observed for the small contact angles is rel
to the influence of the surface defects addressed in the
lowing section.

III. INFLUENCE OF THE SURFACE DEFECTS
ON THE RELAXATION TIME

The motion of the contact line in the presence of defe
has been frequently studied~see@5# for a review!. However,
little is understood at the moment because the problem
very sophisticated. Most of its studies deal with the influen
of the defects on the static contact line~see, e.g.,@16#! when
they are responsible for the contact angle hysteresis.
latter was studied in@17# and @18# for the wedge geometry
that assumes the external forcing of the contact line. W
the contact line moves under the action of a forcef, it en-
counters pinning on the random potential created by sur
defects. Thus, the motion shows the ‘‘stick-slip’’ behavior.
is characteristic for a wide range of physical systems wh
pinning takes place and is the basis of the theory of dyna
cal critical phenomena, in which the average contact l
velocity is

vn5vc~ f / f c21!b, ~31!

where the exponentb is universal andf c is the pinning
threshold. This expression is often applied~see @19#, and
references therein! to the contact line motion in the system
where the geometry of the meniscus does not depend on
dragging force. However, the values ofb vary widely de-
pending on the experimental conditions and do not co
spond to the theoretical predictions. The motion of the c
tact line during the coalescence of drops is even m
complicated because the geometry of the meniscus is
stantly changing. Therefore, application of the express
~31! is even more questionable in this situation.

In this section we employ the formalism developed in t
preceding section in order to understand the influence of
surface defects on the relaxation time of the drop where
contact line isnot forced externally. The surface defects ar
modeled by the spatial variation of the local density of t
surface energy, which can be related to the local value of
equilibrium contact angleueq(rW) by the Young formula as
was suggested in@17# to describe the static contact angle
The expression~9! can be rewritten for this case in the for

U5sAVL2sE
(ALS)

cosueq~rW !drW. ~32!

The contribution of the defects and, thus, the deformat
dRx of the contact line due to the defects is assumed to
small. Then, in the first approximation that corresponds
the ‘‘horizontal averaging’’ approximation from@17#

U5U (0)1DU. ~33!
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The superscript (0) means that the corresponding quanti
calculated fordRx50 and for the constant value of the co
tact angleūeq defined by the expression

ūeq5arccosF 1

ALS
(0)E(ALS

(0))
cosueq~rW !drWG . ~34!

Then

U (0)5sAVL
(0)2sALS

(0)cosūeq . ~35!

It can be shown that the first-order correction to this val
which appears due to the defects is

DU52sE
(ALS

(0))
@cosueq~rW !2cosūeq#drW. ~36!

We accept the following model for defects because it is,
one hand, simple and, on the other hand, proven@17# to be a
good description for the advancing and the receding con
angles in the approximation considered. The defects are
posed to be similar circular spots of radiusr arranged in a
regular spatially periodic pattern,l being the spatial period
the same in both directions, see Fig. 3. The spots and
clean surface have the values of the equilibrium cont
angleu1 andu2,u1, respectively. For this pattern, Eq.~34!
yields

ūeq5arccos@«2cosu11~12«2!cosu2#, ~37!

the parameter«2 being the fraction of the surface covered b
the defect spots. We consider the caser ,l/4 in the follow-
ing. Then it is obvious from Fig. 3, that

«252p~r /l!2. ~38!

In the following, we will for simplicity treat a two-
dimensional~2D! sessile drop, i.e., a liquid stripe of infinit

FIG. 3. Unit cell of the model defect pattern on the solid su
face. The reference system and the values of the contact angl
side the round spots (u1) and outside them (u2) are also shown.
5-5



rc

e

t

p
5
at

he
f

um
h

5.
al
dius

uck
he
tion

-
slip
the

uld

to-
eal
ine
-
e
ch

tion
re-

ing
sus
cal
een
act

orm
hes
the
he
e of
-
er.
e is
s a

this

of
a-

ins
k-
dy-
ng-
a
than

ta

-

VADIM S. NIKOLAYEV AND DANIEL A. BEYSENS PHYSICAL REVIEW E 65 046135
length, the cross section of which is the segment of a ci
as shown in Fig. 4. The volumeV of the stripe per its length
l does not change with time,

V/ l 5
Rx

2

2 sin2u
~u2sinu cosu!, ~39!

where Rx is the half width of the stripe, see Fig. 4. Th
dynamic contact angleu can be calculated from Eq.~39!,
provided thatRx is known. It can be shown by the direc
calculation ofU (0), Eq. ~35! and the dissipation functionT,
Eq. ~6! that Eq.~8! with the substitutionqj→Rx reduces to
the equation

Ṙx5
s

j
~cosūeq2cosu!2

1

2 j l

dDU

dRx
. ~40!

The first-order correction to the drop energyDU can be cal-
culated from Eq.~36! by following the guidelines of@17#. Its
explicit expression for the chosen geometry is given in A
pendix B. The kinetics of the relaxation is shown in Fig.
The relaxation kinetics for the drop on the ideal substr

FIG. 4. Reference system to describe the 2D drop. The con
angleu is shown too.

FIG. 5. Temporal evolution of the half widthRx of the drop with
and with no defects with the same initial (t50) value of Rx

52 R* and for R* 5100l and ū'55°. The latter value corre
sponds to the defect radiusr 50.2l, u1570°, andu2550°.
04613
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with the equilibrium value of the contact angle equal to t
value ofūeq is also shown for comparison. The half width o
the drop on the ideal substrate relaxes to its equilibri
value R* that is related to the volume of the drop throug
Eq. ~39! written for u5 ūeq and Rx5R* . We choseR* /l
5100 for Fig. 5.

The stick-slip motion is illustrated in the inset in Fig.
Note that the contact line in its final position for the nonide
case is pinned in a metastable state so that the final 2D ra
of the drop is larger thanR* . The final contact angle~the
equilibrium receding contact angle!, thus, differs from that
for an ideal surface. Because the contact line is being st
on the defects, its motion is slowed down. However, t
presence of defects does not change strongly the relaxa
time. It remains of the order oft05R* j/s because this de
celeration is compensated by the acceleration during the
motion. Figure 5 shows the impact of the defects on
relaxation. The relaxation time appears to besmaller in the
presence of defects than in the ideal case~no defects! be-
cause the contact line is pinned by defects whereas it wo
have continued to move on ideal surface.

It should be noted that this model is just a first step
wards the description of contact line kinetics on a nonid
substrate. In reality, the different portions of the contact l
slip at different moments in time~cascades of slips are ob
served, e.g., in@19#!. This means that the liquid flows in th
direction parallel to the contact line to the distances mu
larger than the defect size, i.e., the first-order approxima
is not adequate. The direction of this flow reverses f
quently. This effect can lead to the expression as Eq.~31! and
to a large relaxation time.

IV. CONCLUSIONS

This paper deals with two important issues concern
contact line dynamics. First, it discusses the local ver
nonlocal approaches to contact line motion. While the lo
approach consists in postulating a direct relationship betw
the normal contact line velocity and the dynamic cont
angleat a given point of the contact line, the nonlocal ap-
proach starts from a more general hypothesis about the f
of the dissipation function of the droplet. These approac
give the same results for very small contact angles or for
normal contact line velocity that does not vary along t
contact line, which is the case of a drop that has the shap
a spherical cap. In other cases~large contact angle, non
spherical drops! the results of these two approaches diff
We carried out calculations assuming that the drop surfac
a spheroid. In reality, its surface is not a spheroid and ha
constant curvature. More work is needed to overcome
approximation.

The second issue treated in this article is the influence
surface defects on contact line dynamics. In the approxim
tion of a 2D drop, it is assumed that the contact line rema
straight during its motion. In this approximation, the stic
slip microscopic motion does not influence the average
namics strongly. The defects manifest themselves by cha
ing the final position of the contact line by pinning it in
metastable state. Therefore, the relaxation is more rapid

ct
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that on an ideally clean surface simply because it is ter
nated earlier.

APPENDIX A: DERIVATION OF THE DYNAMIC
EQUATIONS FOR r x AND r y

We used theMATHEMATICA™ system for the analytica
computations. We find first the dissipation functionT. The
contact line can be described by the equation

F~x,y!50 with F~x,y!5
x2

Rx
2

1
y2

Ry
2

21, ~A1!

where Rx and Ry are time dependent. By using the we
known formula of differential geometryvn52Ḟ/u“Fu, the
integral ~6! can be written in an explicit form. In order t
obtain the first-order approximation forT, one can use the
expansion~15!. We need to keep only the second-ord
terms. Since the integrand is a quadratic form with respec
ṙ x , ṙ y , one can putr x ,r y50 in it. The resulting expression
can be integrated to obtain the explicit expression for
dissipation function

T5
jpR3sin3us

8
~3ṙ x

213ṙ y
222ṙ xṙ y!. ~A2!

It is easy to find out thatT>0 always holds as it should be
It is more difficult to obtain the drop interface area

AVL5E
ASL

A11S ]z

]xD 2

1S ]z

]yD 2

dA, ~A3!

where the functionz5z(x,y) is defined by Eq.~11!. After
the integration overy, Eq. ~A3! reduces to

AVL54bE
0

Rx
arctanS b

d
A12

d2

b2
2

x2

a2DA12
x2

a2
edx,

~A4!
04613
i-

r
to

e

where«512Ry
2/Rx

2;(r x2r y)!1. The subsequent develop
ment of the integrand into the series overe and its integra-
tion term-by-term results in

AVL5apF2~b2d!2
e

6 b2
~2b323b2d1d3!

2
e2

160b4
~8 b5215b4d110b2d323d5!G . ~A5!

This expression can be developed into a series with res
to r x ,r y by using Eqs.~12! ~13!–~15!. Its substitution into
Eq. ~9! leads to the explicit expression forU,

U5spR2H 223 cosus1cos3us1
sin2us

8

3@A~r x
21r y

2!22Brxr y#J , ~A6!

where

A5@~2881491 cosus1374 cos2us1107 cos3us!

3~12cosus!#/@45~11cosus!#,

B5@~721409 cosus1346 cos2us173 cos3us!

3~12cosus!#/@45~11cosus!#. ~A7!

It is easy to show that the expression in the square brac
in Eq. ~A6! is positive for an arbitraryus . It means that the
function U(r x ,r y) has its minimum at the point (r x50,r y
50), i.e., for the drop that has the shape of the spherical c
This result was expected.

The substitution of Eqs.~A6! and ~A2! into Eq. ~8! writ-
ten for qj5(r x ,r y) results in the set of Eqs.~18! and, thus,
concludes their derivation.
s
tates.
APPENDIX B: EXPRESSION FOR THE FIRST-ORDER CORRECTION TO THE DROP ENERGY CAUSED BY DEFECTS

The accepted assumptions facilitate calculation of theDU(Rx). The resulting function is periodical with the periodl/2, so
that for r ,l/4 it can be presented in the form

DU

2srDc
525

«2r2@r 2arcsin~r/r !1r~r 22r2!1/2#/l, 0<r,r

«2~r2l/4!, r<r,
l

2
2r

«2~r2l/2!1$r 2arcsin@~l/22r!/r #1~l/22r!@r 22~l/22r!2#1/2%/l,
l

2
2r<r,

l

2
,

~B1!

wherer is the fractional part of 2Rx /l, multiplied by l/2, andDc5cosu22cosu1. SinceRx@l, the presence of defect
generates many local minima of the functionU(Rx) near its global minimum. These minima represent the metastable s
According to this model, the contact line is pinned in the minimum closest to its initial position.
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